The Development of the ThinQu Keyboard Layout: Factors that Influence Typing Effort

The ThinQu Keyboard Layout is an optimized keyboard layout I recently developed for standard keyboards. It is designed to maximize both typing speed and comfort.

It turns out to be extremely costly and difficult to build a model for typing comfort or effort. In existing studies, a regression model with several variables is usually built to measure typing effort and compare a few different layouts. The regression coefficients are either calculated by real data or purely speculated. The structures of these models are flawed due to the inflexibility of regression models and lack of data to estimate the coefficients accurately. It’s very costly to obtain real human data in typing speed and effort for multiple layouts because of the low population size and high learning cost of newer layouts. In addition, it’s very hard to measure typing effort and time is not a good proxy for effort; wasting time in waiting for other fingers to finish is more relaxing than spending time to get to the target key.

There are a couple of variables known to correlate with typing effort and I will go through the complexity of each one although it’s hard to talk quantitatively without empirical data. All frequency data come from the Norvig study.

Key location and effort

Workman‘s layout nicely gives each key an effort score. The main inaccuracy is that the N key (of QWERTY keyboard) should be rated a 2 according to the symmetry with the V key. Secondly, the effort score for the low ring finger keys should be more like a 3.5 instead of a 4. Note that due to the difference in the right hand base keys, there is an extra middle column in ThinQu which would be rated a 5 or 6.

Workman’s finger strain mapping. Higher score means more effortful.

From the diagram, we can see a strong interaction between row and finger. Missing this interaction is the major drawback in carpalx’s model and implicitly in Colemak and many other layouts.

To place the most frequent letters in the best locations to reduce finger movement, we consult the letter frequency chart, which is adjusted for the multi-letter keys th, in, qu, and tion:

Clipboard_20180621 (2).png

Note that h loses more than half of its usage due to the th key. The in key takes away 28% of the load on i and n, alleviating the pinkies. Continue reading “The Development of the ThinQu Keyboard Layout: Factors that Influence Typing Effort”

Advertisements